
C/C++

Object Oriented Programming in C++

Study Material
● As many as possible MCQs from GFG Topic-wise sections
● YouTube lecture series

General
● Empty classes have size = 1 (To uniquely identify the same)
● The default return type in CPP is INT.
● For all non-static integer variables, the default value is garbage. For all the static and

global variables, the same is set to 0.
● Function declarations can provide default values as well. Default arguments must follow

non-default values.

void foo (int, int = 10)

int main() {
foo(5); // Output: 15

}

void foo (int a, int b) { cout << a + b << "\n"; }

● While evaluating expressions with logical operators, remember that they are L2R
associative and have SHORT-CIRCUITING built into them.

● Switch statements match the first condition in the clause and allow fall through to other
clauses if the BREAK keyword is not used.

● Bitwise operators like (<<, >>) have precedence even lower than (+ -). Thus, we need to
be careful when evaluating expressions involving them.

● All major operators are L2R associative, expect
○ Increment (++)
○ Decrement (--)
○ Logical and Bitwise NOT (! ~)
○ Ternary (? :)
○ Assignment and Compound Assignment (= += -= …)

● :: when used with a variable name is used to refer to the global scope.
● printf returns the number of characters printed by the same by default.

New Keyword
● New keyword calls the constructor for the class, while malloc does not.

https://www.geeksforgeeks.org/c-programming-multiple-choice-questions/
https://www.youtube.com/watch?v=ncMo5au4nXU&list=PLA8BpojmT5JF4KKQCEIqURc71z6nvYXEK


C/C++

● To restrict the dynamic allocation of a class, we can declare private new and new[]
operators so that the same can not be constructed. Similar techniques are also used
with private copy constructors to disable shallow copying.

Constructors and Destructors
● A class can not have the destructors of any other class (even if it derives them).
● The destructors are always called in the reverse order of the calling of the constructors.
● When inheriting, the constructors of the parent classes are called first (in the correct

order), and then the class's constructor is called.
● If you define any constructor for the class, then the default constructor IS NOT created.
● Whenever creating an object, the memory for the object is first allocated, and only after

this are the constructors called. Allocating the memory of the class may involve calling
the constructors of the data members.
(Parent Classes -> Data Members -> Own Constructor)

class A
{
public:

A() { cout << "A "; }
};

class B
{
public:

B() { cout << "B "; }
};

class C : public A
{
public:

B b;
C() { cout << "C "; }

};

int main()
{

C c;
/// Output: A B C

}



C/C++

C/C++

● Copy const䀀



int main()
{

try
{

Test t1[5];
}
catch (int x)
{

cout << "Caught";
}

}
// Output is 1 2 D Caught
// The destructor for the 2nd and all the items after the same is not called

● When an object is passed into a method, then the copy constructor of the object is called
and NOT the default constructor. If the same is passed by reference, then no constructor
needs to be called.

Inheritance
● Base data types can store the objects of derived classes.

○ If a class inherits from multiple parent classes, it can be assigned to any of them.
● If the classes are used directly, then no overriding of functions occurs, and the base

class is always used (an example of default copying). If pointers are used and the
overridden function is marked as virtual, only then will the function from the derived
class be used.

● Classes are inherited in privatemode by default. Private members can’t be inherited, and
the inherited members have visibility set as the minimum of the mode of inheritance and
their original visibility.

● If there is multilevel inheritance, then the function is linearly searched up in the
inheritance hierarchy until a matching function is found. Ambiguity occurs when there
are two functions with the same name at the same level (refer Diamond Problem).

○ If we are overriding a function in the derived class, then all of the overloaded
functions with the same name (and different signatures) would be overridden.

○ Even after overriding, you can use the scope resolution operator to access the
functions any level up the inheritance chain.

● A base class pointer can point to a derived class object, but we can only access base
class members or virtual functions using the base class pointer.

● When inheriting a class, the inherited class must have a default un-parameterised
constructor, or the initializer list syntax must be used to call the appropriate
parameterized constructor.



C/C++

C/C++

class Foo
{
public:

Foo(int x) {}
};

class Bar : public Foo
{
public:

Bar() : Foo(42) {}
};

● Virtual objects are shared between the classes. Copy constructor first initializes all the
parent classes by calling their (default) constructors, and then invokes the body of the
function.

class A
{
public:

A() { cout << 1; }
A(const A &a) { cout << 2; }

};

class B : public virtual A
{
public:

B() { cout << 3; }
B(const B &b) { cout << 4; }

};

class C : public virtual A
{
public:

C() { cout << 5; }
C(const C &c) { cout << 6; }

};

class D : public B, public C
{
public:

D() { cout << 7; }



C/C++

D(const D &d) { cout << 8; }
};

int main()
{

D d1;
D d2 = d1;
/// Output: 13571358
return 0;

}

Overloading
● The overloading of the postfix operator involves a dummy parameter.
● Overloading of the new keyword ONLY allows to change the memory allocation method,

but does not do anything with the constructor called. The same is determined by the
class invocation following the new keyword.

● Dot, conditional and scope resolution operators can’t be overloaded. Conversion
operators can be overloaded, but can’t be done so globally.

● Conversion operators are automatically called when the typecasting of the classes
occurs when passing to functions or assignment to a declared variable of specific type.

● Rule of Three: If you are writing one of copy constructor, assignment operator destructor,
you should probably write all three.

● Overloading of binary operators is done in manner analogous to the same:

class Complex {
private:

int real, imag;

public:
Complex(int r = 0, int i = 0)
{

real = r;
imag = i;

}

Complex operator+(Complex const& obj)
{

Complex res;
res.real = real + obj.real;
res.imag = imag + obj.imag;
return res;

https://www.geeksforgeeks.org/rule-of-three-in-cpp/


C/C++

}

void print() { cout << real << " + i" << imag << '\n'; }
};

Abstract Classes
● Abstract classes CAN have constructors.

Static Variables and Functions
● Size of static variables is NOT included in the size of the instance object.
● The initialization of the static variables only happens once in the whole program.

void foo(int y)
{

static int x = y;
x++;
cout << x << endl;

}

int main()
{

foo(0);
foo(1);
foo(2);
/// Ouput: 1 2 3

}

● Static attributes in a class are created when they are USED FOR THE FIRST time (or
referred/accessed) in the program source code.

● this is passed to all the non-static function calls as a hidden argument.
● Static functions can not be virtual.

Function Overloading
● In case you are overloading the same function with multiple definitions for different data

types of arguments, the type of the argument MUST EXACTLY match that of at least one
of the definitions.

Constant Functions



C/C++

C/C++

● They can only call other constant functions.
● They can be invoked by constant and non constant objects both.
● They can be overridden

struct Foo {
public:

void foo() { cout << "1\n"; }
void foo() const { cout << "2\n"; }

};

int main() {
Foo a;
a.foo();

const Foo b;
b.foo();
// Output: 1 2

}

● Different meanings when used with pointers:

const int *ptr /// Pointer to constant integer
int *const ptr /// Constant pointer to integer
const int *const ptr /// Constant pointer to constant integer

● A constant integer can only be assigned to a pointer to a constant integer (the pointer
itself may or may not be constant).

Structure Member Alignment & Greedy Alignment
● char -> 1B
● short int -> 2B
● int -> 4B
● double -> 8B

● Size of the structure is a multiple of the largest data type present in the same.
● Efficient packing is done of the variables, but the order of the variables must be

respected.

Storage Classes of Variables



C/C++

● Auto: Default storage class, Stack based, Garbage default value, Block scoped and end
of life at end of block

● Static: Data Segment, 0 default value, Scope is within block, but life is end of program
● Register: Stored in register, Garbage default value, Block scoped and end of life at end of

block.
● Extern: Extends the visibility of the variables and functions to the whole program. Stored

in data segment, have 0 default initialization, and have the entire program as scope. Life
is till the end of the program.

Templates
● Templates are an example of runtime polymorphism.
● Compiler creates a new instance of a template function for every data type. Thus the

static members of a template are shared for the same data type objects.
● We can pass non-type arguments to templates including integers and constants.

Template arguments can also have default values or types associated with them.
● Non type parameters must be constant.
● Templates can also be specialized for particular classes:

#include <iostream>
using namespace std;

template <class T>
T max (T &a, T &b)
{

return (a > b)? a : b;
}

/// Specialization of the max function for the type 'int'
template <>
int max <int> (int &a, int &b)
{

cout << "Called ";
return (a > b)? a : b;

}

int main ()
{

int a = 10, b = 20;
cout << max <int> (a, b);
/// Ouput: Called 20

}



C/C++

● Macros are expanded by preprocessor, before compilation proper; templates are
expanded at compile time. Thus macros are more difficult to debug and less efficient
than using templates.

Exceptions
● The statements which may cause problems are put in the try block. Also, the statements

which should not be executed after a problem occurred, are put in try block.
● Exceptions bubble up the call stack until they are caught.
● catch(...) is the catch all syntax to catch the exceptions of any type. It must be the last

catch block, otherwise a compile time error is raised.
● All the objects in the try block are first dropped, and only then the control is transferred to

the catch block.
● Destructors are only called for objects whose constructors complete without any error

being encountered.
● C++ compiler doesn't check and enforce a function to list the exceptions that it can

throw. In Java, it is enforced.
● If both base and derived classes are caught as exceptions then the catch block of

derived class must appear before the base class. If we put base class first then the
derived class catch block will never be reached. In Java, catching a base class exception
before derived is not allowed by the compiler itself. In C++, the compiler might give
warnings about it, but compiles the code. This behavior exists as the compiler
automatically typecasts the error to fix the arguments.

● C++ has no finally clause, so it is recommended to follow the RAII pattern (implementing
objects with destructors to cleanup the resources).

General Tips
● If you are getting confused in pointers and values, it is helpful to actually assume the

addresses of the variables and then simulate the whole program.
● The double-number-sign or token-pasting operator (##), which is sometimes called the

merging or combining operator, is used in both object-like and function-like macros. It
permits separate tokens to be joined into a single token, and therefore, can't be the first
or last token in the macro definition.

#define f(g, h) g##h

int main()
{

int ab = 10;
cout << f(a, b); // Equivalent to cout << ab | Prints 10

}

https://www.geeksforgeeks.org/resource-acquisition-is-initialization/


SOLID Principles

1. Single Responsibility Principle (SRP)
A class should have only one reason to change, meaning it should only have one job or
responsibility.

Example: Imagine a User class that handles user data. If it’s also responsible for saving data to
a database and logging activities, it’s doing too much. Instead, the User class should handle
user-related logic. A UserRepository class should handle data persistence and a Logger class
should handle logging.

SRP promotes separation of concerns, which makes debugging easier because each class has
a clear role. It’s especially practical in large projects, as it reduces dependencies and makes unit
testing easier. However, too strictly adhering to SRP can lead to an overly fragmented
codebase, so balance is key.

2. Open-Closed Principle (OCP)
Software entities should be open for extension but closed for modification. You should be able to
add new functionality without changing existing code.

Example: Suppose you have a PaymentProcessor class that handles different payment
methods. Instead of modifying the class to add each new payment type, create a
PaymentMethod interface that each payment type (like CreditCardPayment or PayPalPayment)
implements. The PaymentProcessor can then accept any PaymentMethod implementation
without being modified.

OCP is practical when you expect frequent changes or additions to the system, such as adding
new features. It keeps the codebase stable, and adding new functionalities becomes easier.
However, implementing OCP can sometimes lead to an excess of small, similar classes, so it
should be used in scenarios where flexibility is essential.

3. Liskov Substitution Principle (LSP)
Derived classes should be substitutable for their base classes without altering the correctness of
the program.

Example: Consider a Rectangle class with width and height properties, and a Square class that
inherits from Rectangle. If Square redefines width and height to always be equal, it can break
LSP when used in place of a Rectangle in functions that expect a rectangle. Instead, Square
should not inherit from Rectangle if the relationship breaks logical expectations.

LSP promotes the use of inheritance with caution. Violating LSP can lead to unexpected
behavior and subtle bugs, especially when classes are part of an inheritance chain. It's practical



to ensure that any subclass doesn’t break the intended behavior of the base class in complex
inheritance hierarchies.

4. Interface Segregation Principle (ISP)
A client should not be forced to implement interfaces it doesn’t use. In other words, interfaces
should be small and specific to particular client needs.

Example: Instead of a large Worker interface with methods like code(), test(), and design(),
break it down into smaller interfaces like Coder, Tester, and Designer. A class implementing
Tester won’t have unnecessary methods like design().

ISP helps to keep interfaces focused and makes code cleaner and more maintainable. When
interfaces are too large or general, classes implementing them often end up with unused
methods, leading to bloated or confusing code. ISP is very useful in code that relies heavily on
abstractions, as it keeps implementations streamlined.

5. Dependency Inversion Principle (DIP)
High-level modules should not depend on low-level modules. Both should depend on
abstractions. Additionally, abstractions should not depend on details; details should depend on
abstractions.

Example: Instead of a UserService class directly depending on a concrete UserRepository
class, it should depend on an interface, IUserRepository. The concrete class
SQLUserRepository would then implement IUserRepository. This way, UserService can work
with any IUserRepository implementation, making it easier to swap databases or mock the
repository for testing.

DIP reduces tight coupling, which makes components more flexible and easier to test. This is
especially useful in large systems with multiple dependencies and potential changes in
implementations. It promotes dependency injection, making it practical in layered architectures
and when following inversion-of-control (IoC) patterns.


